- Trang chủ
- Lớp 11
- Toán học Lớp 11
- SGK Toán Lớp 11 Chân trời sáng tạo
- Toán 11 tập 1 Chân trời sáng tạo
- Chương 1 Hàm số lượng giác và phương trình lượng giác
-
Toán 11 tập 1
-
Giải Toán 11 tập 2
Bài 5 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
Đề bài
Tại các giá trị nào của x thì đồ thị hàm số y = cosx và y = sinx giao nhau?
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\sin x = cos\left( {\frac{\pi }{2} - x} \right)\) và giải phương trình côsin
Lời giải chi tiết
Đồ thị hàm số y = cosx và y = sinx giao nhau tại điểm x thoả mãn
\(cosx = sinx \Leftrightarrow cosx = cos\left( {\frac{\pi }{2} - x} \right)\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} - x + k2\pi \\x = - \frac{\pi }{2} + x + k2\pi \end{array} \right. \Leftrightarrow x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}.\)
Vậy \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}.\)