Bài 5.26 trang 124 SGK Toán 11 tập 1 - Kết nối tri thức
Đề bài
Tìm giới hạn của các dãy số sau:
a) \({u_n} = \frac{{{n^2}}}{{3{n^2} + 7n - 2}}\);
b) \({v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}}\);
c) \({w_n} = \frac{{\sin n}}{{4n}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn
Lời giải chi tiết
a) \(\lim {u_n} = \lim \frac{{{n^2}}}{{3{n^2} + 7n - 2}} = \lim \left( {\frac{1}{{3 + \frac{7}{n} - \frac{2}{{{n^2}}}}}} \right) = \frac{1}{3}\)
b,
\(\begin{array}{l}{v_n} = \mathop \sum \limits_{k = 0}^n \frac{{{3^k} + {5^k}}}{{{6^k}}} = \frac{{{3^0} + {5^0}}}{{{6^0}}} + \frac{{{3^1} + {5^1}}}{{{6^1}}} + ... + \frac{{{3^n} + {5^n}}}{{{6^n}}}\\ = \frac{{{3^0}}}{{{6^0}}} + \frac{{{5^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} + \frac{{{5^n}}}{{{6^n}}}\\ = \left[ {\left( {\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}}} \right)} \right] + \left[ {\left( {\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}}} \right)} \right]\end{array}\)
Vì \(\frac{{{3^0}}}{{{6^0}}};\frac{{{3^1}}}{{{6^1}}};...;\frac{{{3^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{3^0}}}{{{6^0}}} = 1,\,q = \frac{3}{6} = \frac{1}{2}\). Do đó:
\(\frac{{{3^0}}}{{{6^0}}} + \frac{{{3^1}}}{{{6^1}}} + ... + \frac{{{3^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^{n + 1}}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^{n + 1}} = 2 - {\left( {\frac{1}{2}} \right)^n}\)
Vì \(\frac{{{5^0}}}{{{6^0}}};\frac{{{5^1}}}{{{6^1}}};...;\frac{{{5^n}}}{{{6^n}}}\) là cấp số nhân có \(\left( {n + 1} \right)\) số hạng với \({u_1} = \frac{{{5^0}}}{{{6^0}}} = 1,\,q = \frac{5}{6}\). Do đó:
\(\frac{{{5^0}}}{{{6^0}}} + \frac{{{5^1}}}{{{6^1}}} + ... + \frac{{{5^n}}}{{{6^n}}} = 1.\frac{{1 - {{\left( {\frac{5}{6}} \right)}^{n + 1}}}}{{1 - \frac{5}{6}}} = 6 - 6.{\left( {\frac{5}{6}} \right)^{n + 1}} = 6 - 5.{\left( {\frac{5}{6}} \right)^n}\)
Vậy \({v_n} = 2 - {\left( {\frac{1}{2}} \right)^n} + 6 - 5.{\left( {\frac{5}{6}} \right)^n} = 8 - {\left( {\frac{1}{2}} \right)^n} - 5.{\left( {\frac{5}{6}} \right)^n}\)
Do đó, \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = \mathop {\lim }\limits_{n \to + \infty } \left[ {8 - {{\left( {\frac{1}{2}} \right)}^n} - 5.{{\left( {\frac{5}{6}} \right)}^n}} \right] = 8\).
c, Ta có:
\(0 \le \left| {\sin n} \right| \le 1 \Leftrightarrow 0 \le \left| {\frac{{\sin n}}{{4n}}} \right| \le \frac{1}{{4n}}\)
Mà \(\mathop {\lim }\limits_{n \to + \infty } \frac{1}{{4n}} = 0\) nên theo nguyên lý kẹp \(\mathop {\lim }\limits_{n \to + \infty } \left| {\frac{{\sin n}}{{4n}}} \right| = 0\)