- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2. TAM GIÁC
- Chủ đề 3: Tam giác - Tam giác bằng nhau
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 9 trang 157 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho tam giác ABC có AB = AC, phân giác của góc A cắt BC tại H.
a) Chứng minh rằng \(\Delta AHB = \Delta AHC\)
b) Chứng minh rằng AH vuông góc với BC.
c) Kẻ \(HE \bot AB(E \in AB),HF \bot AC(F \in AC).\) Chứng minh rằng \(\Delta HEB = \Delta HFC\)
d) Trên tia đối của tia HA ta lấy điểm D sao cho H là trung điểm của AD. Chứng minh rằng \(FH \bot BD\)
Lời giải chi tiết
a)Xét tam giác AHB và AHC có:
AB = AC (giả thiết)
\(\widehat {BAH} = \widehat {CAH}\) (AH là tia phân giác của góc BAC)
AH là cạnh chung.
Do đó: \(\Delta AHB = \Delta AHC(c.g.c)\)
b) Ta có: \(\Delta AHB = \Delta AHC\) (chứng minh câu a)
Suy ra: \(\widehat {AHB} = \widehat {AHC};\widehat {ABH} = \widehat {ACH}\)
Mà \(\widehat {AHB} + \widehat {AHC} = {180^0}\) (kề bù)
Nên \(\eqalign{ & \widehat {AHC} + \widehat {AHC} = {180^0} \Rightarrow 2\widehat {AHC} = {180^0}. \cr & \widehat {AHC} = {90^0} \Rightarrow AH \bot BC \cr} \)
c) Tam giác EBH vuông tại E có: \(\widehat {EBH} + \widehat {EHB} = {90^0}\)
Tam giác FHC vuông tại F có: \(\widehat {FHC} + \widehat {FCH} = {90^0}\)
Mà \(\widehat {EBH} = \widehat {FCH}\) (chứng minh câu b) nên \(\widehat {EHB} = \widehat {FHC.}\)
Xét tam giác HEB và HFC có:
\(\eqalign{ & \widehat {EBH} = \widehat {FCH} \cr & \widehat {EHB} = \widehat {FHC}(cmt) \cr & HB = HC(\Delta AHB = \Delta AHC) \cr} \)
Do đó: \(\Delta HEB = \Delta HFC(g.c.g)\)
d) Xét tam giác AHC và DHB có:
AH = DH (giả thiết)
\(\eqalign{ & HC = HB(\Delta AHB = \Delta AHC) \cr & \widehat {AHC} = \widehat {BHD}( = {90^0}) \cr} \)
Do đó: \(\Delta AHC = \Delta DHB(c.g.c) \Rightarrow \widehat {HAC} = \widehat {HDB}\)
Mà hai góc này ở vị trí so le trong do đó AC // BD.
Mặt khác \(HF \bot AC\) (giả thiết) nên ta có: \(HF \bot BD\)