- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương V. Đường tròn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 1 trang 119 vở thực hành Toán 9
Đề bài
Cho hai đường thẳng a và b song song với nhau, điểm O nằm trong phần mặt phẳng ở giữa hai đường thẳng đó. Biết rằng khoảng cách từ O đến a và b lần lượt bằng 2cm và 3cm.
a) Hỏi bán kính R của đường tròn (O; R) phải thỏa mãn điều kiện gì để (O; R) cắt cả hai đường thẳng a và b?
b) Biết rằng đường tròn (O; R) tiếp xúc với đường thẳng a. Hãy xác định vị trí tương đối của đường tròn (O; R) và đường thẳng b.
Phương pháp giải - Xem chi tiết
Cho đường thẳng a và đường tròn (O; R). Gọi d là khoảng cách từ O đến a. Khi đó:
+ Đường thẳng a và đường tròn (O; R) cắt nhau khi \(d < R\).
+ Đường thẳng a và đường tròn (O; R) tiếp xúc với nhau khi \(d = R\).
+ Đường thẳng a và đường tròn (O; R) không giao nhau khi \(d > R\).
Lời giải chi tiết
a) Điều kiện để (O; R) cắt cả hai đường thẳng a và b là \(R > 3cm\).
b) Khi (O; R) tiếp xúc với a, ta có \(R = 2cm\), nhỏ hơn khoảng cách từ O đến đường thẳng b nên đường thẳng b cắt đường tròn (O; R).