Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số bậc ba \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong như Hình 30.

a) Phương trình \(f\left( x \right) = 4\) có hai nghiệm \(x =  - 1,x = 2\).

b) Phương trình \(f\left( x \right) =  - 1\) có hai nghiệm.

c) Phương trình \(f\left( x \right) = 2\) có ba nghiệm.

d) Phương trình \(f\left( {f\left( x \right)} \right) = 4\) có sáu nghiệm.

29.png

Phương pháp giải - Xem chi tiết

‒ Xét đồ thị hàm số.

Lời giải chi tiết

• Đường thẳng \(y = 4\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại hai điểm có hoành độ bằng ‒1 và 2 nên phương trình \(f\left( x \right) = 4\) có hai nghiệm \(x =  - 1,x = 2\). Vậy a) đúng.

• Đường thẳng \(y =  - 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại một điểm nên phương trình \(f\left( x \right) =  - 1\) có một nghiệm. Vậy b) sai.

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại ba điểm nên phương trình \(f\left( x \right) = 2\) có ba nghiệm. Vậy c) đúng.

• Ta có: \(f\left( {f\left( x \right)} \right) = 4\) khi \(f\left( x \right) =  - 1\) hoặc \(f\left( x \right) = 2\).

Với \(f\left( x \right) =  - 1\), phương trình có một nghiệm.

Với \(f\left( x \right) = 2\), phương trình có ba nghiệm phân biệt. Vậy phương trình đã cho có bốn nghiệm phân biệt. Vậy d) sai.

a) Đ.                                  

b) S.                                  

c) Đ.                                  

d) S.

30.png