Bài 1. Vecto và các phép toán vecto trong không gian Cánh diều
Giải bài 1 trang 60 sách bài tập toán 12 - Cánh diều
Cho tứ diện (ABCD). Lấy (G) là trọng tâm tam giác (BCD). Phát biểu nào sau đây là sai? A. (overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 ). B. (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 ). C. (overrightarrow {CB} + overrightarrow {CD} = 3overrightarrow {CG} ). D. (overrightarrow {AB} + overrightarrow {AC} + overrightarrow {AD} = 3overrightarrow {AG} ).
Giải bài 2 trang 60 sách bài tập toán 12 - Cánh diều
Cho hình hộp (ABCD.A'B'C'D'). Phát biểu nào nào sau đây là đúng? A. (overrightarrow {AB} + overrightarrow {AD} + overrightarrow {BB'} = overrightarrow {AC'} ). B. (overrightarrow {A'B'} + overrightarrow {A'D'} + overrightarrow {A'A} = overrightarrow {AC'} ). C. (overrightarrow {AB} + overrightarrow {BD} + overrightarrow {A'A} = overrightarrow {AC'} ). D. (overrightarrow {AB} + overrightarrow {AD} + overrightarrow {A'A} = overrightarrow {AC'} ).
Giải bài 3 trang 60 sách bài tập toán 12 - Cánh diều
Phát biểu nào nào sau đây là đúng? A. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b ) và số thực (k), ta có: (kleft( {overrightarrow a + overrightarrow b } right) = koverrightarrow a + koverrightarrow b ). B. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b ) và số thực (k), ta có: (kleft( {overrightarrow a + overrightarrow b } right) = overrightarrow a k + overrightarrow b k). C. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b )
Giải bài 4 trang 60 sách bài tập toán 12 - Cánh diều
Cho hình lập phương (ABCD.A'B'C'D'). Góc giữa hai vectơ (overrightarrow {BD} ,overrightarrow {B'C} ) bằng: A. ({30^ circ }). B. ({45^ circ }). C. ({120^ circ }). D. ({60^ circ }).
Giải bài 5 trang 60 sách bài tập toán 12 - Cánh diều
Cho hình lập phương (ABCD.A'B'C'D'). Góc giữa hai vectơ (overrightarrow {AC} ,overrightarrow {DA'} ) bằng: A. ({30^ circ }). B. ({45^ circ }). C. ({120^ circ }). D. ({60^ circ }).
Giải bài 6 trang 60 sách bài tập toán 12 - Cánh diều
Trong không gian, cho hai vectơ (overrightarrow a ,overrightarrow b ) tạo với nhau một góc ({60^ circ }) và (left| {overrightarrow a } right| = 3cm,left| {overrightarrow b } right| = 4cm). Khi đó (overrightarrow a .overrightarrow b ) bằng: A. 12. B. 6. C. (6sqrt 3 ). D. ‒6.
Giải bài 7 trang 61 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp (S.ABC) có (SA = SB = SC = AB = AC = a) và (BC = asqrt 2 ) (Hình 9). a) Tam giác (ABC) vuông tại (A) và tam giác (SAB) đều. b) (overrightarrow {AB} .overrightarrow {AC} = 0) và (left( {overrightarrow {SA} ,overrightarrow {AB} } right) = {120^ circ }). c) (overrightarrow {SC} .overrightarrow {AB} = frac{{{a^2}}}{2}). d) (cos left( {overrightarrow {SC} ,overrightarrow {AB} } r
Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp tứ giác đều (S.ABCD) có độ dài tất cả các cạnh đều bằng (a) (Hình 10). a) Tứ giác (ABCD) là hình vuông. b) Tam giác (SAC) vuông cân tại (S). c) (left( {overrightarrow {SA} ,overrightarrow {AC} } right) = {45^ circ }). d) (overrightarrow {SA} .overrightarrow {AC} = - {a^2}).
Giải bài 9 trang 61 sách bài tập toán 12 - Cánh diều
Một chiếc đèn tròn được treo song song với mặt phẳng nằm ngang bởi ba sợi dây không dãn xuất phát từ điểm \(O\) trên trần nhà lần lượt buộc vào ba điểm \(A,B,C\) trên đèn tròn (Hình 11). Độ dài của ba đoạn dây \(OA,OB,OC\) đều bằng \(L\left( {inch} \right)\). Trọng lượng của chiếc đèn là \(24N\) và bán kính của chiếc đèn là \(18inch\left( {1inch = 2,54cm} \right)\). Gọi \(F\) là độ lớn của các lực căng \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) trên mỗi sợi dâ