- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 11 trang 28 vở thực hành Toán 9
Đề bài
Hai vật chuyển động đều trên một đường tròn đường kính 20cm, xuất phát cùng một lúc, từ cùng một điểm. Nếu chuyển động ngược chiều thì cứ sau 4 giây chúng lại gặp nhau. Nếu chuyển động cùng chiều thì cứ 20 giây chúng lại gặp nhau. Tính vận tốc (cm/s) của mỗi vật.
Phương pháp giải - Xem chi tiết
Các bước giải một bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình:
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
- Lập hệ phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2. Giải hệ phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.
Lời giải chi tiết
- Gọi vận tốc của vật thứ nhất là x (cm/s), của vật thứ hai là y(cm/s). Điều kiện: \(x,y > 0\). Ngoài ra có thể giả thiết rằng vật thứ nhất đi nhanh hơn, tức là \(x > y\).
Giả sử hai vật chuyển động ngược chiều. Sau 4 giây, quãng đường vật thứ nhất đi được là 4x (cm), vật thứ hai đi được 4y (cm). Hai vật gặp nhau có nghĩa là tổng quãng đường hai vật đi được đúng bằng một vòng (chu vi của đường tròn), tức là \(20\pi \left( {cm} \right)\). Do đó ta có phương trình \(4x + 4y = 20\pi \) (1).
Khi hai vật chuyển động cùng chiều, sau 20 giây chúng gặp nhau có nghĩa là khi đó quãng đường vật thứ nhất đi được nhiều hơn quãng đường vật thứ hai đi được đúng một vòng. Do đó ta có phương trình \(20x - 20y = 20\pi \) (2).
Từ (1) và (2), ta có hệ phương trình \(\left\{ \begin{array}{l}4x + 4y = 20\pi \\20x - 20y = 20\pi \end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y = 5\pi \\x - y = \pi \end{array} \right.\)
- Giải hệ phương trình:
Trừ từng vế hai phương trình của hệ ta được \(2y = 4\pi \), suy ra \(y = 2\pi \).
Thay \(y = 2\pi \) vào phương trình thứ nhất của hệ ta được: \(x + 2\pi = 5\pi \), suy ra \(x = 3\pi \).
- Các giá trị \(x = 3\pi \) và \(y = 2\pi \) thỏa mãn các điều kiện của ẩn.
Vậy vận tốc của vật thứ nhất là \(3\pi \)cm/s, của vật thứ hai là \(2\pi \)cm/s.