Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 2a,AD = 3a,AA' = 4a\left( {a > 0} \right)\). Gọi \(M,N,P\) lần lượt là các điểm thuộc các tia \(AB,AD,AA'\) sao cho \(AM = a,AN = 2a,AP = 3a\). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {MNP} \right)\).

Phương pháp giải - Xem chi tiết

Gắn vào hệ trục toạ độ và sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng.

Lời giải chi tiết

Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên các đường thẳng \(AB,AD,AA'\) đôi một vuông góc. Do đó ta có thể gắn hệ trục toạ độ \(Oxyz\) thoả mãn \(A\left( {0;0;0} \right),B\left( {2a;0;0} \right),D\left( {0;3{\rm{a}};0} \right),\)\(A'\left( {0;0;4{\rm{a}}} \right)\).

Khi đó \(M\left( {a;0;0} \right),N\left( {0;2{\rm{a}};0} \right),P\left( {0;0;3{\rm{a}}} \right),C'\left( {2{\rm{a}};3{\rm{a}};4{\rm{a}}} \right)\).

Phương trình mặt phẳng \(\left( {MNP} \right)\) là: \(\frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{3a}} = 1\) hay \(\frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{3a}} - 1 = 0\).

Khi đó khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {MNP} \right)\) bằng:

\(d\left( {C',\left( {MNP} \right)} \right) = \frac{{\left| {\frac{{2{\rm{a}}}}{a} + \frac{{3{\rm{a}}}}{{2a}} + \frac{{4{\rm{a}}}}{{3a}} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{{2a}}} \right)}^2} + {{\left( {\frac{1}{{3a}}} \right)}^2}} }} = \frac{{\frac{{23}}{6}}}{{\sqrt {\frac{{49}}{{36{a^2}}}} }} = \frac{{23a}}{7}\).