- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương V. Đường tròn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 2 trang 113 vở thực hành Toán 9
Đề bài
Cho đường tròn (O) đi qua ba đỉnh A, B và C của một tam giác cân tại A. Chứng minh rằng đường thẳng đi qua A và song song với BC là một tiếp tuyến của (O).
Phương pháp giải - Xem chi tiết
+ Gọi d là đường thẳng đi qua A và song song với BC.
+ Chứng minh OA là đường trung trực của BC, suy ra \(BC \bot OA\).
+ Mà d//BC nên \(d \bot OA\), suy ra d là tiếp tuyến của (O).
Lời giải chi tiết
(H.5.29)
Gọi d là đường thẳng đi qua A và song song với BC.
Ta có: O khác A và \(OB = OC\).
Mặt khác, tam giác ABC cân tại A nên \(AB = AC\).
Từ đó suy ra OA là đường trung trực của BC, tức là \(BC \bot OA\); mà d//BC nên \(d \bot OA\).
Do đó d tiếp xúc với (O) tại A, hay d là tiếp tuyến của (O). (theo dấu hiệu nhận biết tiếp tuyến).