Giải bài 2 trang 92 vở thực hành Toán 9 tập 2

Đề bài

Cho tam giác đều ABC nội tiếp đường tròn (O). Biết rằng đường tròn (O) có bán kính bằng 3cm. Tính diện tích tam giác ABC.

Phương pháp giải - Xem chi tiết

+ Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Ta có: \(R = \frac{{\sqrt 3 }}{3}BC\) nên tính được BC.

+ Gọi M là trung điểm của BC nên \(AM = \frac{3}{2}AO\).

+ Diện tích tam giác ABC là: \(S = \frac{1}{2}AM.BC\).

Lời giải chi tiết

3_7.png

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Ta có: \(R = \frac{{\sqrt 3 }}{3}BC\), hay \(BC = \sqrt 3 R = 3\sqrt 3 cm\).

Gọi M là trung điểm của BC. Ta có: \(AM = \frac{3}{2}AO = \frac{9}{2}cm\).

Vậy \({S_{ABC}} = \frac{1}{2}AM.BC = \frac{{27\sqrt 3 }}{4}\;c{m^2}\).