- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương V. Đường tròn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 3 trang 102, 103 vở thực hành Toán 9
Đề bài
Tâm O của một đường tròn cách dây AB của nó một khoảng 3cm. Tính bán kính của đường tròn (O), biết rằng cung nhỏ AB có số đo bằng \({100^o}\) (làm tròn kết quả đến hàng phần mười).
Phương pháp giải - Xem chi tiết
+ Gọi C là trung điểm của AB. Theo đề bài, ta có \(OC= 3cm\) và $\widehat{AOB}=sđ\overset\frown{AB}$\( = {100^o}\).
+ Chứng minh OC là khoảng cách từ O đến AB. Do OC là tia phân giác của góc AOB nên \(\widehat {AOC} = {50^o}\). + Trong tam giác vuông AOC, ta có \(\cos \widehat {AOC} = \cos {50^o} = \frac{{OC}}{{OA}}\) nên tính được OA.
Lời giải chi tiết
(H.5.11)
Gọi C là trung điểm của AB. Chứng minh tương tự bài tập 2, ta suy ra OC là khoảng cách từ O đến AB. Theo đề bài, ta có \(OH = 3cm\) và $\widehat{AOB}=sđ\overset\frown{AB}$\( = {100^o}\). Do OC là tia phân giác của góc AOB nên \(\widehat {AOC} = {50^o}\). Trong tam giác vuông AOC, ta có \(\cos \widehat {AOC} = \cos {50^o} = \frac{{OC}}{{OA}}\).
Vậy bán kính đường tròn (O) là \(R = OA = \frac{{OC}}{{\cos \widehat {AOC}}} = \frac{3}{{\cos {{50}^o}}} \approx 4,7\left( {cm} \right)\).