Giải bài 3 trang 59 sách bài tập toán 12 - Chân trời sáng tạo

Đề bài

Xác định tâm và bán kính của mặt cầu có phương trình sau:

a) \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\);

b) \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\);

c) \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\).

Phương pháp giải - Xem chi tiết

Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).

Lời giải chi tiết

a) Mặt cầu \(\left( S \right):{\left( {x - 7} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 49\) có tâm \(I\left( {7;3; - 4} \right)\), bán kính \(R = \sqrt {49}  = 7\).

b) Mặt cầu \(\left( {S'} \right):{x^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 11\) có tâm \(I\left( {0; - 1;2} \right)\), bán kính \(R = \sqrt {11} \).

c) Mặt cầu \(\left( S'' \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\) có tâm \(I\left( {0;0;0} \right)\), bán kính \(R = \sqrt {25}  = 5\).