Giải bài 4.37 trang 20 sách bài tập toán 12 - Kết nối tri thức

Đề bài

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(f\left( x \right) \le 0,\forall x \in \left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\) và hai đường thẳng \(x = a,x = b\) được tính bằng công thức

A. \(S = \int\limits_a^b {f\left( x \right)dx} \).

B. \(S =  - \int\limits_a^b {f\left( x \right)dx} \).                            

C. \(S = \pi \int\limits_a^b {f\left( x \right)dx} \).

D. \(S = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

Phương pháp giải - Xem chi tiết

Diện tích hình phẳng theo yêu cầu bài toán được tính theo công thức  \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

Diện tích hình phẳng cần tìm là

\(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx}  = \int\limits_a^b {\left[ { - f\left( x \right)} \right]dx}  =  - \int\limits_a^b {f\left( x \right)dx} \) (do \(f\left( x \right) \le 0,\forall x \in \left[ {a;b} \right]\)).

Vậy ta chọn đáp án B.