- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 5 trang 46 vở thực hành Toán 9
Đề bài
Một hãng viễn thông nước ngoài có hai gói cước như sau:
a) Hãy viết một phương trình xác định thời gian gọi (phút) mà phí phải trả trong cùng một tháng của hai gói cước là như nhau và giải phương trình đó.
b) Nếu khách hàng chỉ gọi tối đa là 180 phút trong 1 tháng thì nên dùng gói cước nào?
Nếu khách hàng chỉ gọi tối đa là 500 phút trong 1 tháng thì nên dùng gói cước nào?
Phương pháp giải - Xem chi tiết
a) Gọi x là số phút gọi trong một tháng. Biểu diễn phí phải trả của hai gói cước A và B theo x, lập phương trình và giải.
b) Giải bất phương trình \(32 + 0,4\left( {x - 45} \right) > 44 + 0,25x\) từ đó rút ra kết luận.
Lời giải chi tiết
a) Gọi x là số phút gọi trong một tháng. Số phút phải trả tiền theo gói cước A là \(x - 45\) (phút) với \(x > 45\)
Phí phải trả theo gói cước A là \(32 + 0,4\left( {x - 45} \right)\) (USD)
Phí phải trả theo gói cước B là \(44 + 0,25x\) (USD)
Để phí phải trả theo hai gói cước là như nhau thì
\(32 + 0,4\left( {x - 45} \right) = 44 + 0,25x\)
\(32 + 0,4x - 18 = 44 + 0,25x\)
\(0,4x - 0,25x = 44 + 18 - 32\)
\(0,15x = 30\)
\(x = 200\)
Vậy cần gọi 200 phút trong một tháng thì phí phải trả cho hai gói cước là như nhau.
b) Xét bất phương trình
\(32 + \left( {x - 45} \right).0,4 > 44 + 0,25x\)
\(32 + 0,4x - 18 > 44 + 0,25x\)
\(0,4x - 0,25x > 44 + 18 - 32\)
\(0,15x > 30\)
\(x > 200\)
Nếu khách hàng chỉ dùng tối đa 180 phút trong 1 tháng thì khách hàng nên dùng gói cước A.
Nếu khách hàng dùng khoảng 500 phút trong 1 tháng thì khách hàng nên dùng gói cước B.