Giải bài 50 trang 66 sách bài tập toán 12 - Cánh diều

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho hai điểm \(M\left( {0; - 1;1} \right)\) và \(N\left( {4;1;5} \right)\).

a) Mặt cầu đường kính \(MN\) có tâm là trung điểm của đoạn thẳng \(MN\).

b) Nếu \(I\) là trung điểm của \(MN\) thì \(I\left( {2;0;6} \right)\).

c) Bán kính của mặt cầu đường kính \(MN\) bằng 3.

d) Phương trình mặt cầu đường kính \(MN\) là: \({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = 9\).

Phương pháp giải - Xem chi tiết

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

Mặt cầu đường kính \(MN\) có tâm là trung điểm của đoạn thẳng \(MN\). Vậy a) đúng.

Nếu \(I\) là trung điểm của \(MN\) thì \(I\left( {\frac{{0 + 4}}{2};\frac{{ - 1 + 1}}{2};\frac{{1 + 5}}{2}} \right)\) hay \(I\left( {2;0;3} \right)\). Vậy b) sai.

Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {\left( { - 1} \right) - 0} \right)}^2} + {{\left( {1 - 3} \right)}^2}}  = 3\).

Vậy c) đúng.

Vậy phương trình mặt cầu đó là:

\({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = {3^2}\) hay \({\left( {x - 2} \right)^2} + {\rm{ }}{y^2} + {\left( {z - 3} \right)^2} = 9\).

Vậy d) đúng.

a) Đ.

b) S.

c) Đ.

d) Đ.