- Trang chủ
- Lớp 11
- Toán học Lớp 11
- SBT Toán Lớp 11 Kết nối tri thức
- SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG Kết nối tri thức
- Chương V. Giới hạn. Hàm số liên tục
-
SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
-
SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG
Giải bài 5.24 trang 86 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
Đề bài
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) \(f\left( x \right) = \frac{{{x^3} + x + 1}}{{{x^2} - 3x + 2}}\)
b) \(f\left( x \right) = \frac{{\cos x}}{{{x^2} + 3x - 4}}\)
Phương pháp giải - Xem chi tiết
Các hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
Lời giải chi tiết
a) Tập xác định của hàm số f(x) là \(\left( { - \infty ,1} \right) \cup \left( {1;2} \right) \cup \left( {2; + \infty } \right)\).
Do đó, hàm số f(x) liên tục trên các khoảng \(\left( { - \infty ,1} \right);\left( {1;2} \right);\left( {2; + \infty } \right)\)
b) Tập xác định của hàm số f(x) là \(\left( { - \infty , - 4} \right) \cup \left( { - 4;1} \right) \cup \left( {1; + \infty } \right)\).
Do đó, hàm số f(x) liên tục trên các khoảng \(\left( { - \infty , - 4} \right);\left( { - 4;1} \right);\left( {1; + \infty } \right)\)