Giải bài 68 trang 30 sách bài tập toán 12 - Cánh diều

Đề bài

Một vật chuyển động với vận tốc \(v\left( t \right) = 3 - 2\sin t\left( {m/s} \right)\), trong đó \(t\) là thời gian tính bằng giây. Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\left( s \right)\) đến thời điểm \(t = \frac{\pi }{4}\left( s \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức:

• \(\int {{x^\alpha }dx}  = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C\).

• \(\int {\sin xdx}  =  - \cos x + C\).

Lời giải chi tiết

Quãng đường mà vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\left( s \right)\) đến thời điểm \(t = \frac{\pi }{4}\left( s \right)\) là:

\(S = \int\limits_0^{\frac{\pi }{4}} {\left( {3 - 2\sin t} \right)dt}  = \left. {\left( {3t + 2\cos t} \right)} \right|_0^{\frac{\pi }{4}} = \left( {3.\frac{\pi }{4} + 2\cos \frac{\pi }{4}} \right) - \left( {3.0 + 2\cos 0} \right) = \frac{{3\pi }}{4} + \sqrt 2  - 2\left( m \right)\).