- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 2
- Chương X. Một số hình khối trong thực tiễn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 7 trang 118 vở thực hành Toán 9 tập 2
Đề bài
Một khối gỗ có dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm.
a) Tính thể tích của khối gỗ đó (làm tròn kết quả tới hàng phần trăm của \(c{m^3}\)).
b) Nếu sơn kín các mặt của khối gỗ thì diện tích cần sơn bằng bao nhiêu? (Làm tròn kết quả tới hàng đơn vị của \(c{m^2}\)).
Phương pháp giải - Xem chi tiết
a) Thể tích của hình trụ có bán kính đáy R và chiều cao h là: \(V={{S}_{đ\acute{a}y}}.h=\pi {{R}^{2}}h\).
b) Diện tích xung quanh của hình trụ có bán kính đáy R và chiều cao h là: \({S_{xq}} = 2\pi Rh\).
Diện tích cần sơn bằng diện tích xung quanh cộng với diện tích hai đáy.
Lời giải chi tiết
Ta có \(R = 30cm,h = 120cm\).
a) Thể tích của khối gỗ là:
\(V = \pi {R^2}h = \pi {.30^2}.120 \approx 339\;292,01\left( {c{m^3}} \right)\).
b) Diện tích cần sơn bằng diện tích toàn phần của khối gỗ hình trụ:
\(S = 2\pi {R^2} + 2\pi Rh = 2\pi {.30^2} + 2\pi .30.120 \approx 28\;274\left( {c{m^2}} \right)\)