Giải bài 72 trang 70 sách bài tập toán 12 - Cánh diều

Đề bài

Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) (làm tròn kết quả đến hàng đơn vị của độ), biết \(\Delta :\left\{ \begin{array}{l}x =  - 1 - 5t\\y = 4 - 4t\\z =  - 1 + 3t\end{array} \right.\) (với \(t\) là tham số) và \(\left( P \right):3{\rm{x}} + 4y + 5{\rm{z}} + 60 = 0\).

Phương pháp giải - Xem chi tiết

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( { - 5; - 4;3} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;4;5} \right)\).

Sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| { - 5.3 - 4.4 + 3.5} \right|}}{{\sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 4} \right)}^2} + {3^2}} .\sqrt {{3^2} + {4^2} + {5^2}} }} = \frac{8}{{25}}\).

Vậy \(\left( {\Delta ,\left( P \right)} \right) \approx {19^ \circ }\).