- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương IV. Hệ thức lượng trong tam giác vuông
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 9 trang 84 vở thực hành Toán 9
Đề bài
Cho tam giác ABC vuông tại A, \(BC = 10,AB = 6\).
a) Giải tam giác ABC.
b) Từ B kẻ đường thẳng vuông góc với BC, cắt AC tại D. Tính BD, CD, AD và góc ABD. (Góc làm tròn đến độ, cạnh làm tròn đến chữ số thập phân thứ nhất).
Phương pháp giải - Xem chi tiết
a) + Áp dụng định lí Pythagore vào tam giác ABC vuông tại A tính được AC.
+ \(\sin C = \frac{{AB}}{{CB}}\) từ đó tính góc C, \(\widehat B = {90^o} - \widehat C\) tính được góc B.
b) + Tam giác BCD vuông tại B, ta có: \(\tan C = \frac{{BD}}{{CB}}\) nên tính được BD.
+ Áp dụng định lí Pythagore vào tam giác BCD vuông tại B tính được CD.
+ \(AD = CD - AC\) từ đó tính được AD; \(\sin \widehat {ABD} = \frac{{AD}}{{BD}}\) nên tính được góc ABD.
Lời giải chi tiết
(H.4.22)
a) Tam giác ABC vuông tại A, theo định lí Pythagore, ta có \(A{C^2} + A{B^2} = B{C^2}\)
\(A{C^2} = B{C^2} - A{B^2} = 64\) nên \(AC = \sqrt {64} = 8\)
\(\sin C = \frac{{AB}}{{CB}} = \frac{3}{5}\) nên \(\widehat C \approx {37^o}\)
Do đó, \(\widehat B = {90^o} - \widehat C = {53^o}\)
b) Tam giác BCD vuông tại B, ta có \(\tan C = \frac{{BD}}{{CB}}\) nên \(BD = BC.\tan C = 10.\tan {37^o} \approx 7,5\)
\(C{D^2} = B{C^2} + B{D^2} = {10^2} + {7,5^2} = \frac{{625}}{4}\).
Do đó, \(CD = \sqrt {\frac{{625}}{4}} = \frac{{25}}{2}\)
Từ đó, \(AD = CD - AC = \frac{{25}}{2} - 8 = \frac{9}{2}\)
Tam giác ABD vuông tại A, ta có \(\sin \widehat {ABD} = \frac{{AD}}{{BD}} = \frac{3}{5}\), do đó, \(\widehat {ABD} \approx {37^o}\)