- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương IV. Hệ thức lượng trong tam giác vuông
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 9 trang 96 vở thực hành Toán 9
Đề bài
Cho tam giác ABC có \(\widehat {ABC} = {45^o}\). Kẻ đường cao AH (\(H \in BC\)). Biết \(BH = 20,CH = 21\) (H.4.49).
a) Tính AB, AC.
b) Tính góc C và góc A.
Phương pháp giải - Xem chi tiết
a) + Trong tam giác ABH có vuông tại H: \(\cos \widehat {ABH} = \frac{{BH}}{{AB}}\) nên tính được AB, \(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\) nên tính được AH.
+ Trong tam giác AHC có vuông tại H, ta có \(A{C^2} = A{H^2} + H{C^2}\) nên tính được AC.
b) Trong giác AHC có vuông tại H, ta có: \(\sin C = \frac{{AH}}{{AC}}\) nên tính được góc C.
Trong tam giác ABC, ta có: \(\widehat {BAC} + \widehat B + \widehat C = {180^o}\) nên tính được góc BAC.
Lời giải chi tiết
a) Trong giác AHB vuông tại H, ta có
\(\cos \widehat {ABH} = \frac{{BH}}{{AB}}\) nên \(AB = \frac{{BH}}{{\cos \widehat {ABH}}} = \frac{{20}}{{\cos {{45}^o}}} \approx 28,28\)
\(\tan \widehat {ABH} = \frac{{AH}}{{BH}}\) nên \(AH = BH.\tan \widehat {ABH} = 20\tan {45^o} = 20\)
Trong giác AHC có vuông tại H, theo định lí Pythagore, ta có
\(A{C^2} = A{H^2} + H{C^2} = 841\) nên \(AC = 29\)
b) Trong giác AHC có vuông tại H, ta có
\(\sin C = \frac{{AH}}{{AC}} = \frac{{20}}{{29}}\), do đó \(\widehat C \approx {44^o}\)
Trong tam giác ABC, ta có \(\widehat {BAC} + \widehat B + \widehat C = {180^o}\), do đó \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {45^o} - {44^o} \approx {91^o}\)