Giải bài tập 22 trang 14 sách bài tập toán 12 - Cánh diều
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hàm số \(f\left( x \right) = \frac{{\sin 3x + \sin x}}{{\sin 2{\rm{x}}}}\).
a) \(f\left( x \right) = \frac{{2\sin \frac{{3x + x}}{2}\cos \frac{{3x - x}}{2}}}{{\sin 2{\rm{x}}}}\).
b) \(f\left( x \right) = 2\cos x\).
c) \(\int {f\left( x \right)dx} = 2\int {\cos xdx} \).
d) \(\int {f\left( x \right)dx} = - 2\sin x + C\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng biến đổi lượng giác.
‒ Sử dụng công thức: \(\int {\cos xdx} = \sin x + C\).
Lời giải chi tiết
Ta có: \(f\left( x \right) = \frac{{\sin 3x + \sin x}}{{\sin 2{\rm{x}}}} = \frac{{2\sin \frac{{3x + x}}{2}\cos \frac{{3x - x}}{2}}}{{\sin 2{\rm{x}}}} = \frac{{2\sin 2{\rm{x}}\cos x}}{{\sin 2{\rm{x}}}} = 2\cos x\).
Vậy a) đúng, b) đúng.
\(\int {f\left( x \right)dx} = 2\int {\cos xdx} = 2\sin x + C\).
Vậy c) đúng, d) sai.
a) Đ.
b) Đ.
c) Đ.
d) S.