Giải bài tập 5 trang 42 SGK Toán 9 tập 1 - Cánh diều

Đề bài

Cho \(a \ge 2\). Chứng minh:

a. \({a^2} \ge 2a\)

b. \({\left( {a + 1} \right)^2} \ge 4a + 1\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của bất đẳng thức

Lời giải chi tiết

Do \(a \ge 2\) nên \(a - 2 \ge 0\) và \(a \ge 0\)

a. Vì \(a \ge 2\) nên \(a^2 \ge 2a\) (nhân cả hai vế với a)

Vậy \({a^2} \ge 2a\).

b. Vì \(a \ge 2\) nên \(a^2 \ge 2a\) (nhân cả hai vế với a)

Suy ra \(a^2 + 2a \ge 2a + 2a\) hay \(a^2 + 2a \ge 4a\) (cộng cả hai vế với 2a)

Cộng cả hai vế với 1, ta được \(a^2 + 2a + 1 \ge 4a + 1\) hay \({\left( {a + 1} \right)^2} \ge 4a + 1\)

Vậy \({\left( {a + 1} \right)^2} \ge 4a + 1\).