Giải bài tập 5.25 trang 70 SGK Toán 12 tập 2 - Cùng khám phá

Đề bài

Tính góc giữa các cặp đường thẳng sau:

a) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 1 + t\,\,\,\,\,\,\,\,\,\,t \in \mathbb{R}}\\{z = 3 + 4t}\end{array}} \right.\quad {\rm{và}}\quad d':\left\{ {\begin{array}{*{20}{l}}{x = 2 - t'}\\{y =  - 1 + 3t'\,\,\,\,\,t'\, \in \mathbb{R}}\\{z = 4 + 2t'}\end{array}} \right.\)

b) \(d:\frac{x}{1} = \frac{y}{2} = \frac{{z - 2}}{2}\quad {\rm{và }}\quad d':\left\{ {\begin{array}{*{20}{l}}{x = 3 + t'}\\{y =  - 1 + t'\,\,\,\,\,t'\, \in \mathbb{R}}\\{z = 1}\end{array}} \right.\).

c) \(d:\frac{{x - 1}}{{ - 2}} = \frac{y}{3} = \frac{{z + 2}}{6}\quad {\rm{và }}\quad d':\frac{x}{{12}} = \frac{{y + 1}}{2} = \frac{z}{3}\).

Phương pháp giải - Xem chi tiết

- Đối với phương trình tham số \(d:x = {x_0} + at,y = {y_0} + bt,z = {z_0} + ct\), vector chỉ phương của đường thẳng là \(\vec u = (a,b,c)\).

- Đối với phương trình chính tắc \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\), vector chỉ phương của đường thẳng cũng là \(\vec u = (a,b,c)\).

- Góc giữa hai đường thẳng có vector chỉ phương \(\overrightarrow {{u_1}}  = ({a_1},{b_1},{c_1})\) và \(\overrightarrow {{u_2}}  = ({a_2},{b_2},{c_2})\) được tính bởi:

\(\cos \theta  = \frac{{\overrightarrow {{u_1}}  \cdot \overrightarrow {{u_2}} }}{{|\overrightarrow {{u_1}} ||\overrightarrow {{u_2}} |}}\)

Lời giải chi tiết

a)

Vector chỉ phương của \(d\): \(\vec u = (2;1;4)\).

Vector chỉ phương của\(d'\): \(\vec u' = ( - 1;3;2)\). Tích vô hướng:

\(\vec u \cdot \vec u' = 2 \times ( - 1) + 1 \times 3 + 4 \times 2 =  - 2 + 3 + 8 = 9\)

Độ dài:

\(|\vec u| = \sqrt {{2^2} + {1^2} + {4^2}}  = \sqrt {21} ,\quad |\vec u'| = \sqrt {{1^2} + {3^2} + {2^2}}  = \sqrt {14} \)

\(\cos \theta  = \frac{9}{{\sqrt {21}  \times \sqrt {14} }} = \frac{9}{{\sqrt {294} }} = \frac{{3\sqrt 6 }}{{14}}\)

Suy ra \(\theta  = {\cos ^{ - 1}}\left( {\frac{{3\sqrt 6 }}{{14}}} \right) \approx 58^\circ \).

b)

Vector chỉ phương của \(d\): \(\vec u = (1;2;2)\).

 

Vector chỉ phương của\(d'\): \(\vec u' = (1;1;0)\).

Tích vô hướng của hai vector chỉ phương:

\(\vec u \cdot \vec u' = 1 \times 1 + 2 \times 1 + 2 \times 0 = 1 + 2 + 0 = 3\)

Độ dài của \(\vec u\) và \(\vec u'\):

\(|\vec u| = \sqrt {{1^2} + {2^2} + {2^2}}  = \sqrt 9  = 3\)

\(|\vec u'| = \sqrt {{1^2} + {1^2} + {0^2}}  = \sqrt 2 \)

Góc giữa hai đường thẳng:

\(\cos \theta  = \frac{{\vec u \cdot \vec u'}}{{|\vec u||\vec u'|}} = \frac{3}{{3 \times \sqrt 2 }} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\)

Suy ra:

\(\theta  = {\cos ^{ - 1}}\left( {\frac{{\sqrt 2 }}{2}} \right) = 45^\circ \)

c)

Vector chỉ phương của \(d\): \(\vec u = ( - 2;3;6)\).

Vector chỉ phương của \(d'\): \(\vec u' = (12,2,3)\).

Tích vô hướng của hai vector chỉ phương:

\(\vec u \cdot \vec u' = ( - 2) \times 12 + 3 \times 2 + 6 \times 3 =  - 24 + 6 + 18 = 0\)

Vì \(\vec u \cdot \vec u' = 0\), nên \(\theta  = {90^\circ }\), hay hai đường thẳng vuông góc với nhau.