Lý thuyết Hình cầu Toán 9 Cánh diều

1. Hình cầu

1_67.png

Định nghĩa

Hình cầu là hình được tạo ra khi quay một nửa hình tròn một vòng xung quanh một đường thẳng cố định chứa đường kính của nó.

Ví dụ:

1_68.png

Với hình cầu như ở hình trên, ta có:

- Nửa đường tròn đường kính AB quét nên mặt cầu; như vậy, mặt cầu là hình được tạo ra khi quay một nửa đường tròn một vòng xung quanh đường thẳng cố định chứa đường kính của nó;

- Điểm O là tâm của hình cầu (hay tâm của mặt cầu);

- Đoạn thẳng AB là đường kính của hình cầu (hay đường kính của mặt cầu);

- R là bán kính của hình cầu (hay bán kính của mặt cầu).

Phần chung của mặt phẳng và mặt cầu

1_69.png

- Nếu cắt một hình cầu bởi một mặt phẳng thì phần chung giữa chúng là một hình tròn như hình trên. Nếu cắt một hình cầu bởi một mặt phẳng đi qua tâm hình cầu thì phần chung giữa chúng là một hình tròn lớn như hình trên.

- Nếu cắt một mặt cầu bởi một mặt phẳng thì phần chung giữa chúng là một đường tròn.

2. Diện tích của mặt cầu

Diện tích S của mặt cầu có bán kính R là:

\(S = 4\pi {R^2}\).

Ví dụ:

1_70.png

Diện tích mặt cầu là:

\(S = 4\pi {R^2} = 4\pi {.10^2} = 400\pi \left( {c{m^2}} \right)\),

3. Thể tích hình cầu

Thể tích của hình cầu có bán kính R là

\(V = \frac{4}{3}\pi {R^3}\).

Ví dụ:

1_70.png

Thể tích hình cầu là:

\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.10^3} = \frac{{4000\pi }}{3}\left( {c{m^3}} \right)\).

chuong-10-bai-3-hinh-cau.png