- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 2
- Chương IX. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 1 trang 106 vở thực hành Toán 9 tập 2
Đề bài
Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.
Phương pháp giải - Xem chi tiết
+ Gọi M là trung điểm của BC.
+ Chứng minh \(ME = MB = MC = MF\). Suy ra đường tròn \(\left( {M,MB} \right)\) ngoại tiếp tứ giác \(BCEF\).
+ Chứng minh tương tự ta có \(CAFD\)và \(ABDE\) cũng là các tứ giác nội tiếp.
Lời giải chi tiết
Lấy \(M\) là trung điểm của BC.
Do \(BCE,BCF\) là các tam giác vuông có chung cạnh huyền \(BC\) nên \(ME = MB = MC = MF\).
Do đó đường tròn \(\left( {M,MB} \right)\) ngoại tiếp tứ giác \(BCEF\).
Tương tự, \(CAFD\) và \(ABDE\) cũng là các tứ giác nội tiếp.