- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương V. Đường tròn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 1 trang 98 vở thực hành Toán 9
Đề bài
Trong mặt phẳng tọa độ Oxy, cho các điểm M(0; 2), N (0; -3) và P(2; -1). Vẽ hình và cho biết trong các điểm đã cho, điểm nào nằm trên, điểm nào nằm trong, điểm nào nằm ngoài đường tròn (O; \(\sqrt 5 \))? Vì sao?
Phương pháp giải - Xem chi tiết
+ Điểm M nằm trên đường tròn (O; R) nếu \(OM = R\).
+ Điểm M nằm trong đường tròn (O; R) nếu \(OM < R\).
+ Điểm M nằm ngoài đường tròn (O; R) nếu \(OM > R\).
Lời giải chi tiết
(H.5.1)
Điểm M(0; 2) nằm trong đường tròn (O; \(\sqrt 5 \)) vì \(OM = 2 < R = \sqrt 5 \).
Điểm N (0; -3) nằm ngoài đường tròn (O; \(\sqrt 5 \)) vì \(ON = 3 > R = \sqrt 5 \).
Điểm P(2; -1) có \(O{P^2} = {1^2} + {2^2} = 5\), tức là \(OP = R = \sqrt 5 \) nên P nằm trên đường tròn (O; \(\sqrt 5 \)).