Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).
Cho hàm số \(y = \frac{{3{\rm{x}} - 2}}{{1 - x}}\).
a) Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 1\).
b) Đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 3\).
c) Điểm \(M\) nằm trên đồ thị hàm số có hoành độ \({x_0} \ne 1\) thì tung độ là \({y_0} = - 3 - \frac{1}{{{x_0} - 1}}\).
d) Tích khoảng cách từ điểm \(M\) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{3{\rm{x}} - 2}}{{1 - x}} =  + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3{\rm{x}} - 2}}{{1 - x}} =  - \infty \)

Vậy \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho. Vậy a) đúng.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{\rm{x}} - 2}}{{1 - x}} =  - 3;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{\rm{x}} - 2}}{{1 - x}} =  - 3\)

Vậy \(y =  - 3\) là tiệm cận ngang của đồ thị hàm số đã cho. Vậy b) sai.

• Điểm \(M\) nằm trên đồ thị hàm số có hoành độ \({x_0} \ne 1\) thì tung độ là:

\({y_0} = \frac{{3{{\rm{x}}_0} - 2}}{{1 - {x_0}}} = \frac{{ - 3\left( {1 - {x_0}} \right) + 1}}{{1 - {x_0}}} =  - 3 + \frac{1}{{1 - {x_0}}} =  - 3 - \frac{1}{{{x_0} - 1}}\).

Vậy c) đúng.

• Xét điểm \(M\left( {{x_0}; - 3 - \frac{1}{{{x_0} - 1}}} \right)\).

Khoảng cách từ \(M\) đến tiệm cận đứng bằng: \(\left| {{x_0} - 1} \right|\).

Khoảng cách từ \(M\) đến tiệm cận ngang bằng: \(\left| { - 3 - \frac{1}{{{x_0} - 1}} - \left( { - 3} \right)} \right| = \left| { - \frac{1}{{{x_0} - 1}}} \right| = \frac{1}{{\left| {{x_0} - 1} \right|}}\).

Tích khoảng cách từ điểm \(M\) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số bằng: \(\left| {{x_0} - 1} \right|.\frac{1}{{\left| {{x_0} - 1} \right|}} = 1\).

Vậy d) đúng.

a) Đ.                                  

b) S.                                  

c) Đ.                                  

d) Đ.