- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương III. Căn bậc hai và căn bậc ba
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 2 trang 56 vở thực hành Toán 9
Đề bài
Thực hiện phép tính:
a) \(\sqrt 3 \left( {\sqrt {192} - \sqrt {75} } \right)\);
b) \(\frac{{ - 3\sqrt {18} + 5\sqrt {50} - \sqrt {128} }}{{7\sqrt 2 }}\).
Phương pháp giải - Xem chi tiết
a) + \(\sqrt {{a^2}} = \left| a \right|\) với mọi số thực a.
+ Với A, B là các biểu thức không âm, ta có \(\sqrt A .\sqrt B = \sqrt {AB} \).
b) + \(\sqrt {{a^2}} = \left| a \right|\) với mọi số thực a.
+ Nếu A, B là các biểu thức với \(A \ge 0,B > 0\) thì \(\frac{{\sqrt A }}{{\sqrt B }} = \sqrt {\frac{A}{B}} \).
Lời giải chi tiết
a) \(\sqrt 3 \left( {\sqrt {192} - \sqrt {75} } \right) = \sqrt 3 .\sqrt {192} - \sqrt 3 .\sqrt {75} \)
\(= \sqrt {3.192} - \sqrt {3.75} = \sqrt {{{3.3.8}^2}} - \sqrt {{{3.3.5}^2}} \)
\(= 3.8 - 3.5 = 9\)
b) \(\frac{{ - 3\sqrt {18} + 5\sqrt {50} - \sqrt {128} }}{{7\sqrt 2 }} \)
\(= \frac{{ - 3\sqrt {18} }}{{7\sqrt 2 }} + \frac{{5\sqrt {50} }}{{7\sqrt 2 }} + \frac{{ - \sqrt {128} }}{{7\sqrt 2 }}\)
\( = - \frac{3}{7}\sqrt {\frac{{18}}{2}} + \frac{5}{7}\sqrt {\frac{{50}}{2}} + \frac{{ - 1}}{7}\sqrt {\frac{{128}}{2}} \)
\(= - \frac{3}{7}\sqrt 9 + \frac{5}{7}\sqrt {25} + \frac{{ - 1}}{7}\sqrt {64} \)
\( = - \frac{3}{7}.3 + \frac{5}{7}.5 + \frac{{ - 1}}{7}.8 = \frac{8}{7}\)