-
GIẢI SGK TOÁN 8 CÁNH DIỀU - MỚI NHẤT
-
Toán 7 tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
- Bài 1. Số vô tỉ. Căn bậc hai số học
- Bài 2. Tập hợp R các số thực
- Bài 3. Giá trị tuyệt đối của một số thực
- Bài 4. Làm tròn và ước lượng
- Bài 5. Tỉ lệ thức
- Bài 6. Dãy tỉ số bằng nhau
- Bài 7. Đại lượng tỉ lệ thuận
- Bài 8. Đại lượng tỉ lệ nghịch
- Bài tập cuối chương II
- Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh
-
Chương III. Hình học trực quan
-
Chương IV. Góc. Đường thẳng song song
-
-
Toán 7 tập 2
-
Chương V. Một số yếu tố thống kê và xác suất
- Bài 1. Thu thập, phân loại và biểu diễn dữ liệu
- Bài 2. Phân tích và xử lí dữ liệu
- Bài 3. Biểu đồ đoạn thẳng
- Bài 4. Biểu đồ hình quạt tròn
- Bài 5. Biến cố trong một số trò chơi đơn giản
- Bài 6. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
- Bài tập cuối chương V
- Hoạt động thực hành và trải nghiệm. Chủ đề 3. Dung tích phổi
-
Chương VI. Biểu thức đại số
-
Chương VII. Tam giác
- Bài 1. Tổng các góc của một tam giác
- Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác
- Bài 3. Hai tam giác bằng nhau
- Bài 4. Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh
- Bài 5. Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh
- Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc- cạnh - góc
- Bài 7. Tam giác cân
- Bài 8. Đường vuông góc và đường xiên
- Bài 9. Đường trung trực của một đoạn thẳng
- Bài 10. Tính chất ba đường trung tuyến của tam giác
- Bài 11. Tính chất ba đường phân giác của tam giác
- Bài 12. Tính chất ba đường trung trực của tam giác
- Bài 13. Tính chất ba đường cao của tam giác
- Bài tập cuối chương VII
-
Giải bài 4 trang 103 SGK Toán 7 tập 2 - Cánh diều
Đề bài
Cho đường thẳng d là đường trung trực của đoạn thẳng AB. Điểm M không thuộc đường thẳng d và đoạn thẳng AB sao cho đường thẳng d cắt đoạn thẳng MB tại điểm I. Chứng minh:
a) \(MB = AI + IM\);
b) MA < MB.
Phương pháp giải - Xem chi tiết
a) Dựa vào tính chất của đường trung trực: Một điểm thuộc đường trung trực thì cách đều hai đầu mút.
b) Dựa vào tính chất trong tam giác: Tổng hai cạnh bất kì luôn lớn hơn độ dài cạnh còn lại.
Lời giải chi tiết
a) Ta có: Đường thẳng d là đường trung trực của đoạn thẳng AB. Mà điểm I thuộc đường thẳng d nên suy ra: IA = IB. (Một điểm thuộc đường trung trực thì cách đều hai đầu mút).
Ta có: \(MB = MI + IB\) mà IA = IB nên \(MB = MI + IA = AI + IM\).
b) Xét tam giác AMI có: \(MA < AI + IM\)(Tổng hai cạnh bất kì trong một tam giác luôn lớn hơn độ dài cạnh còn lại) mà \(MB = AI + IM\).
Vậy \(MA < MB\).