Giải bài 4.36 trang 19 sách bài tập toán 12 - Kết nối tri thức
Đề bài
Giá trị trung bình của hàm \(f\left( x \right)\) trên \(\left[ {a;b} \right]\) được tính theo công thức \(m = \frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Khi đó giá trị trung bình của hàm \(f\left( x \right) = {x^2} + 2x\) trên đoạn \(\left[ {0;3} \right]\) là
A. \(\frac{8}{3}\).
B. 18.
C. 6.
D. 5.
Phương pháp giải - Xem chi tiết
Áp dụng công thức giá trị trung bình \(m = \frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \).
Lời giải chi tiết
Giá trị trung bình của hàm \(f\left( x \right) = {x^2} + 2x\) trên đoạn \(\left[ {0;3} \right]\) là
\(m = \frac{1}{{3 - 0}}\int\limits_0^3 {\left( {{x^2} + 2x} \right)dx} = \frac{1}{3}\left. {\left( {\frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^3 = 6\).
Vậy ta chọn đáp án C.
- Giải bài 4.37 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.38 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.40 trang 20 sách bài tập toán 12 - Kết nối tri thức
- Giải bài 4.41 trang 21 sách bài tập toán 12 - Kết nối tri thức