Giải bài 48 trang 27 sách bài tập toán 12 - Cánh diều

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho hình phẳng được tô màu như Hình 12. Diện tích hình phẳng được kí hiệu là \(S\).

a) Hình phẳng đó được giới hạn bởi đồ thị \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x =  - 1,x = 5\).

b) \(S = \int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx} \).

c) \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^5 {f\left( x \right)dx} \).

d) \(S = \int\limits_{ - 1}^1 {f\left( x \right)dx}  - \int\limits_1^5 {f\left( x \right)dx} \).

5.png

Phương pháp giải - Xem chi tiết

Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

Hình phẳng đã cho được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x =  - 1,x = 5\). Vậy a) đúng.

Diện tích hình phẳng được tính theo công thức:

\(S = \int\limits_{ - 1}^5 {\left| {f\left( x \right)} \right|dx}  = \int\limits_{ - 1}^1 {f\left( x \right)dx}  - \int\limits_1^5 {f\left( x \right)dx} \) (vì \(f\left( x \right) > 0,\forall x \in \left[ { - 1;1} \right]\) và \(f\left( x \right) < 0,\forall x \in \left[ {1;5} \right]\)).

Vậy b) đúng, c) sai, d) đúng.

a) Đ.

b) Đ.

c) S.

d) Đ.