- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 2
- Chương X. Một số hình khối trong thực tiễn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 5 trang 117 vở thực hành Toán 9 tập 2
Đề bài
Một dụng cụ gồm một phần có dạng hình trụ và một phần có dạng hình nón với các kích thước như hình bên.
a) Tính thể tích của dụng cụ này.
b) Tính diện tích mặt ngoài của dụng cụ (không tính đáy của dụng cụ).
Phương pháp giải - Xem chi tiết
a) Thể tích của hình trụ có bán kính đáy R và chiều cao h là: \(V={{S}_{đ\acute{a}y}}.h=\pi {{R}^{2}}h\).
Thể tích của hình nón bán kính r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\).
b) Diện tích xung quanh của hình trụ có bán kính đáy R và chiều cao h là: \({S_{xq}} = 2\pi Rh\).
Diện tích xung quanh của hình nón bán kính r và độ dài đường sinh l là: \({S_{xq}} = \pi rl\).
Lời giải chi tiết
a) Thể tích của hình trụ là:
\({V_1} = \pi {R^2}h = \pi {.40^2}.100 = 160\;000\pi \left( {c{m^3}} \right).\)
Thể tích của hình nón là:
\({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.40^2}.50 = \frac{{80\;000\pi }}{3}\left( {c{m^3}} \right).\)
Thể tích của dụng cụ này là:
\(V = {V_1} + {V_2} = 160\;000\pi + \frac{{80\;000\pi }}{3} = \frac{{560\;000\pi }}{3}\left( {c{m^3}} \right).\)
b) Diện tích xung quanh hình trụ là:
\({S_1} = 2\pi Rh = 2\pi \cdot 40 \cdot 100 = 8\,\,000\pi \,\,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích xung quanh hình nón là:
\({S_2} = \pi Rl = \pi \cdot 40 \cdot \sqrt {{{40}^2} + {{50}^2}} = 400\sqrt {41} \pi \,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Diện tích mặt ngoài dụng cụ này là:
\(S = {S_1} + {S_2} = 8{\rm{\;}}000\pi + 400\sqrt {41} \pi \,\,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)