Giải bài 5 trang 117 vở thực hành Toán 9 tập 2

Đề bài

Một dụng cụ gồm một phần có dạng hình trụ và một phần có dạng hình nón với các kích thước như hình bên.

10_1.png

a) Tính thể tích của dụng cụ này.

b) Tính diện tích mặt ngoài của dụng cụ (không tính đáy của dụng cụ).

Phương pháp giải - Xem chi tiết

a) Thể tích của hình trụ có bán kính đáy R và chiều cao h là: \(V={{S}_{đ\acute{a}y}}.h=\pi {{R}^{2}}h\).

Thể tích của hình nón bán kính r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\).

b) Diện tích xung quanh của hình trụ có bán kính đáy R và chiều cao h là: \({S_{xq}} = 2\pi Rh\).

Diện tích xung quanh của hình nón bán kính r và độ dài đường sinh l là: \({S_{xq}} = \pi rl\).

Lời giải chi tiết

a) Thể tích của hình trụ là:

\({V_1} = \pi {R^2}h = \pi {.40^2}.100 = 160\;000\pi \left( {c{m^3}} \right).\)

Thể tích của hình nón là:

\({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.40^2}.50 = \frac{{80\;000\pi }}{3}\left( {c{m^3}} \right).\)

Thể tích của dụng cụ này là:

\(V = {V_1} + {V_2} = 160\;000\pi  + \frac{{80\;000\pi }}{3} = \frac{{560\;000\pi }}{3}\left( {c{m^3}} \right).\)

b) Diện tích xung quanh hình trụ là:

\({S_1} = 2\pi Rh = 2\pi  \cdot 40 \cdot 100 = 8\,\,000\pi \,\,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Diện tích xung quanh hình nón là:

\({S_2} = \pi Rl = \pi  \cdot 40 \cdot \sqrt {{{40}^2} + {{50}^2}}  = 400\sqrt {41} \pi \,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Diện tích mặt ngoài dụng cụ này là:

\(S = {S_1} + {S_2} = 8{\rm{\;}}000\pi  + 400\sqrt {41} \pi \,\,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)