- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương IV. Hệ thức lượng trong tam giác vuông
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 8 trang 95 vở thực hành Toán 9
Đề bài
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết \(AH = 4,CH = 3\) (H.4.48).
a) Giải tam giác ABC (Góc làm tròn đến độ, cạnh làm tròn đến chữ số thập phân thứ nhất).
b) Giải tam giác ABH (Góc làm tròn đến độ, cạnh làm tròn đến chữ số thập phân thứ nhất).
c) Tính giá trị biểu thức \(M = \frac{{\sin B + 3\cos B}}{{\cos B}}\).
Phương pháp giải - Xem chi tiết
a, b) Trong một tam giác vuông, nếu cho biết trước hai cạnh (hoặc một góc nhọn và một cạnh) thì ta sẽ tìm được tất cả các cạnh và góc còn lại của tam giác vuông đó. Bài toán này gọi là bài toán Giải tam giác vuông.
c) Thay \({\widehat B^o} = {37^o}\) vào M, ta tính được M.
Lời giải chi tiết
a) Trong tam giác vuông AHC vuông tại H, theo định lí Pythagore, ta có
\(A{C^2} = A{H^2} + H{C^2} = {4^2} + {3^2} = 25\) nên \(AC = 5\)
\(\tan C = \frac{{AH}}{{HC}} = \frac{4}{3}\), suy ra \(\widehat C \approx {53^o}\)
Tam giác ABC vuông ở A nên ta có
\(\widehat B = {90^o} - \widehat C = {90^o} - {53^o} = {37^o}\)
\(\tan C = \frac{{AB}}{{AC}}\) nên \(AB = AC.\tan C = 5.\tan {53^o} \approx 6,6\)
Theo định lí Pythagore, ta có
\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {6,6^2} = 68,56\) nên \(BC \approx 8,3\)
b) Tam giác ABH có vuông tại H, theo định lí Pythagore, ta có
\(B{H^2} = A{B^2} - A{H^2} = {6,6^2} - {4^2} = 27,56\) nên \(BH \approx 5,2\)
\(\sin \widehat {BAH} = \frac{{BH}}{{AB}} = \frac{{5,2}}{{6,6}}\) nên \(\widehat {BAH} \approx {52^o}\)
c) Ta có: \(M = \frac{{\sin B + 3\cos B}}{{\cos B}} = \frac{{\sin {{37}^o}}}{{\cos {{37}^o}}} + 3 = 0,8 + 3 = 3,8\)