Giải bài tập 1 trang 92 SGK Toán 9 tập 1 - Cánh diều

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha \) (Hình 40).

1_35.png 

a) Tỉ số \(\frac{{HA}}{{HB}}\) bằng:

A. \(\sin \alpha \).

B. \(\cos \alpha \).

C. \(\tan \alpha \).

D. \(\cot \alpha \).

b) Tỉ số \(\frac{{HA}}{{HC}}\) bằng:

A. \(\sin \alpha \).

B. \(\cos \alpha \).

C. \(\tan \alpha \).

D. \(\cot \alpha \).

c) Tỉ số \(\frac{{HA}}{{AC}}\) bằng:

A. \(\sin \alpha \).

B. \(\cos \alpha \).

C. \(\tan \alpha \).

D. \(\cot \alpha \).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào tỉ số lượng giác để giải bài toán.

Lời giải chi tiết

a) Chọn đáp án C.

b) Xét tam giác \(AHC\) vuông tại \(H\) có:

\(\tan C = \frac{{HA}}{{HC}}\).

Do \(\widehat B + \widehat C = 90^\circ \) nên \(\tan C = \cot B\).

Vậy \(\cot \alpha  = \frac{{HA}}{{HC}}\).

Chọn đáp án D.

c) Xét tam giác \(AHC\) vuông tại \(H\) có:

\(\sin C = \frac{{HA}}{{AC}}\).

Do \(\widehat B + \widehat C = 90^\circ \) nên \(\sin C = \cos B\).

Vậy \(\cos \alpha  = \frac{{HA}}{{AC}}\).

Chọn đáp án B.