- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Tài liệu Dạy - học Toán 7 Lớp 7
- CHƯƠNG 2. TAM GIÁC
- Chủ đề 3: Tam giác - Tam giác bằng nhau
-
CHƯƠNG 1. SỐ HỮU TỈ - SỐ THỰC
-
CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ
-
CHƯƠNG 1: ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG
-
CHƯƠNG 2. TAM GIÁC
-
Chủ đề 3: Tam giác - Tam giác bằng nhau
- 1. Tổng ba góc trong một tam giác
- 2. Hai tam giác bằng nhau
- 3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
- 4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
- 5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
- Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
- Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
-
Chủ đề 4. Tam giác cân - Định lý Pythagore
-
Ôn tập chương 2 - Hình học 7
-
-
CHƯƠNG 3: THỐNG KÊ
-
CHƯƠNG 4. BIỂU THỨC ĐẠI SỐ
-
CHƯƠNG 3: QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC
-
Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- 1. Quan hệ giữa góc và cạnh trong một tam giác
- 2. Quan hệ giữa đường vuông góc và đường xiên – Giữa đường xiên và hình chiếu
- 3. Quan hệ giữa ba cạnh của một tam giác bất đẳng thức tam giác
- Bài tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
- Luyện tập - Chủ đề 5 : Quan hệ giữa các yếu tố trong tam giác
-
Chủ đề 6 : Các đường đồng quy của tam giác
- 1. Tính chất ba đường trung tuyến của tam giác
- 2. Tính chất tia phân giác của một góc
- 3. Tính chất ba đường phân giác của tam giác
- 4. Tính chất đường trung trực của một đoạn thẳng
- 5. Tính chất ba đường trung trực của tam giác
- 6. Tính chất ba đường cao trong tam giác
- Bài tập - Chủ đề 6 : Các đường đồng quy của tam giác
- Luyện tập - Chủ đề 6 : Các đường đồng quy của tam giác
-
Ôn tập chương 3 – Hình học
-
-
ÔN TẬP CUỐI NĂM - TÀI LIỆU DẠY-HỌC TOÁN 7
Bài tập 7 trang 156 Tài liệu dạy – học Toán 7 tập 1
Đề bài
Cho tam giác ABC nhọn (AB < AC), phân giác của góc A cắt BC tại D. Trên AC lấy điểm E sao cho AE = AB.
a) Chứng minh rằng \(\Delta ADB = \Delta ADE\)
b) Đường thẳng ED cắt đường thẳng AB tại F. Chứng minh rằng AF = AC.
c) Chứng minh rằng \(\Delta DBF = \Delta DEC\)
Lời giải chi tiết
a)Xét tam giác ADB và ADE có:
AB = AE (gt)
\(\widehat {BAD} = \widehat {EAD}\) (AD là tia phân giác của góc BAC)
AD là cạnh chung.
Do đó: \(\Delta ADB = \Delta ADE(c.g.c)\)
b) Ta có: \(\Delta ADB = \Delta ADE\) (chứng minh câu a)
Suy ra: \(\widehat {ABD} = \widehat {AED}\) và BD = ED
Xét tam giác AEF và ABC có:
\(\widehat {EAF} = \widehat {BAC}\) (góc chung)
AE = AB (gt)
\(\widehat {AEF} = \widehat {ABC}(\widehat {ABD} = \widehat {AED})\)
Do đó: \(\Delta AEF = \Delta ABC(g.c.g) \Rightarrow AF = AC\)
c) Ta có: \(\eqalign{ & \widehat {ABD} + \widehat {DBF} = {180^0} \cr & \widehat {AED} + \widehat {DEC} = {180^0} \cr} \) (hai góc kề bù)
Mà \(\widehat {ABD} = \widehat {AED}\) (chứng minh câu b) nên \(\widehat {DBF} = \widehat {DEC}\)
Xét tam giác BFD và ECD có:
\(\widehat {FBD} = \widehat {CED}(cmt)\)
BD = ED (chứng minh câu b)
\(\widehat {BDF} = \widehat {EDC}\) (hai góc đối đỉnh)
Do đó: \(\Delta BFD = \Delta ECD(g.c.g)\)