Bài tập cuối chương 4 Chân trời sáng tạo

Giải bài tập 1 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Hàm số nào sau đây là một nguyên hàm của hàm số (y = {x^4})? A. ( - frac{{{x^5}}}{5}) B. (4{x^3}) C. (frac{{{x^5}}}{5} + 1) D. ( - 4{x^3} - 1)
Giải bài tập 2 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Hàm số nào sau đây là một nguyên hàm của hàm số (y = frac{1}{{{x^2}}})? A. (frac{1}{{{x^3}}}) B. ( - frac{1}{x}) C. (frac{1}{x}) D. ( - frac{1}{{{x^3}}})
Giải bài tập 3 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Khẳng định nào sau đây đúng? A. (int {left( {cos x - 2sin x} right)dx} = sin x + 2cos x + C) B. [int {left( {cos x - 2sin x} right)dx} = - sin x + 2cos x + C] C. (int {left( {cos x - 2sin x} right)dx} = sin x - 2cos x + C) D. (int {left( {cos x - 2sin x} right)dx} = - sin x - 2cos x + C)
Giải bài tập 4 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Khẳng định nào sau đây đúng? A. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{{{x^3}}}{3} - 2x - frac{1}{x} + C) B. (int {{{left( {x - frac{1}{x}} right)}^2}dx = frac{{{x^3}}}{3} - 2x + frac{1}{x} + C} ) C. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{1}{3}{left( {x - frac{1}{x}} right)^3} + C) D. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{1}{3}{left( {x - frac{1}{x}} right)^3}left( {1 + frac{1}{{{x^2}}}} right) + C)
Giải bài tập 5 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Khẳng định nào sau đây đúng? A. (int {{3^{2x}}dx} = frac{{{9^x}}}{{ln 9}} + C) B. (int {{3^{2x}}dx} = {9^x}.ln 9 + C) C. (int {{3^{2x}}dx} = {left( {frac{{{3^x}}}{{ln 3}}} right)^2} + C) D. (int {{3^{2x}}dx} = {3^x}.ln 3 + C)
Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giá trị của (intlimits_{ - 2}^1 {left( {4{x^3} + 3{x^2} + 8x} right)dx} + intlimits_1^2 {left( {4{x^3} + 3{x^2} + 8x} right)dx} ) bằng A. (16) B. ( - 16) C. (52) D. (0)
Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Biết rằng (intlimits_0^2 {fleft( x right)dx} = - 4). Giá trị của (intlimits_0^2 {left[ {3x - 2fleft( x right)} right]dx} ) bằng A. ( - 2) B. (12) C. (14) D. (22)
Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giá trị của (intlimits_0^2 {left| {{x^2} - x} right|dx} ) bằng: A. (frac{2}{3}) B. (1) C. (frac{1}{3}) D. (2)
Giải bài tập 9 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^3}), (y = x) và hai đường thẳng (x = 0), (x = 2) bằng: A. (2) B. (frac{5}{2}) C. (frac{9}{4}) D. (frac{1}{4})
Giải bài tập 10 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tốc độ chuyển động (v{rm{ }}left( {{rm{m/s}}} right)) của một ca nô trong khoảng thời gian 40 giây được thể hiện như hình dưới đây. Quãng đường đi được của ca nô trong khoảng thời gian này là: A. 400 m B. 350 m C. 310 m D. 200 m
Giải bài tập 11 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Cho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {x + 1} ), trục tung, trục hoành và đường thẳng (x = 2). Thể tích của khối tròn xoay khi quay (D) quanh trục hoành bằng A. (6pi ) B. (2pi ) C. (3pi ) D. (4pi )
Giải bài tập 12 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Cho hàm số (y = fleft( x right)). Đồ thị của hàm số (y = f'left( x right)) là đường cong trong hình dưới đây. Biết rằng diện tích các phần hình phẳng (A) và (B) lần lượt là ({S_A} = 2) và ({S_B} = 3). Nếu (fleft( 0 right) = 4) thì giá trị của (fleft( 5 right)) bằng A. (3) B. (5) C. (9) D. ( - 1)
Giải bài tập 13 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tìm: a) (int {left[ {4{{left( {2 - 3x} right)}^2} - 3cos x} right]dx} ) b) (int {left( {3{x^3} - frac{1}{{2{x^3}}}} right)dx} ) c) (int {left( {frac{2}{{{{sin }^2}x}} - frac{1}{{3{{cos }^2}x}}} right)dx} ) d) (int {left( {{3^2}x - 2 + 4cos x} right)dx} ) e) (int {left( {4sqrt[5]{{{x^4}}} + frac{3}{{sqrt {{x^3}} }}} right)dx} ) g) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}dx} )
Giải bài tập 14 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tính đạo hàm của (Fleft( x right) = ln left( {x + sqrt {{x^2} + 1} } right)). Từ đó suy ra nguyên hàm của (fleft( x right) = frac{1}{{sqrt {{x^2} + 1} }}).
Giải bài tập 15 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Cho (fleft( x right) = {x^2}ln x) và (gleft( x right) = xln x). Tính (f'left( x right)) và (int {gleft( x right)dx} ).
Giải bài tập 16 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tính các tích phân sau: a) (intlimits_0^1 {left( {4{x^3} + x} right)dx} ) b) (intlimits_1^2 {frac{{x - 2}}{{{x^2}}}dx} ) c) (intlimits_0^4 {{2^{2x}}dx} ) d) (intlimits_1^2 {left( {{e^{x - 1}} + {2^{x + 1}}} right)dx} )
Giải bài tập 17 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tính các tích phân sau: a) (intlimits_{frac{pi }{6}}^{frac{pi }{4}} {frac{1}{{{{sin }^2}x}}dx} ) b) (intlimits_0^{frac{pi }{4}} {left( {1 + tan x} right)cos xdx} )
Giải bài tập 18 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Một vật chuyển động với tốc độ (vleft( t right) = 3t + 4{rm{ }}left( {{rm{m/s}}} right)), với thời gian (t) tính theo giây, (t in left[ {0;5} right]). Tính quãng đường vật đi được trong khoảng thời gian từ (t = 0) đến (t = 5).
Giải bài tập 19 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Một chất điểm đang chuyển động với tốc độ ({v_0} = 1{rm{ }}left( {{rm{m/s}}} right)) thì tăng tốc với gia tốc không đổi (a = 3{rm{ m/}}{{rm{s}}^2}). Hỏi tốc độ của chất điểm là bao nhiêu sau 10 giây kể từ khi bắt đầu tăng tốc?
Giải bài tập 20 trang 30 SGK Toán 12 tập 2 - Chân trời sáng tạo
Tốc độ tăng dân số của một thành phố trong một số năm được ước lượng bởi công thức (P'left( t right) = 20.{left( {1,106} right)^t}) với (0 le t le 7), trong đó (t) là thời gian tính theo năm và (t = 0) ứng với đầu năm 2015, (Pleft( t right)) là dân số của thành phố tính theo nghìn người. Cho biết dân số của thành phố đầu năm 2015 là 1008 nghìn người. a) Tính dân số của thành phố ở thời điểm đầu năm 2020 (làm tròn đến nghìn người). b) Tính tốc độ tăng dân số trung bình hằng n