- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 1
- Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 1 trang 38 vở thực hành Toán 9
Đề bài
Giải các phương trình sau:
a) \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right)\);
b) \(\left( { - 4x + 3} \right)x = \left( {2x + 5} \right)x\).
Phương pháp giải - Xem chi tiết
Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.
Lời giải chi tiết
a) Ta có \(2\left( {x + 1} \right) = \left( {5x - 1} \right)\left( {x + 1} \right)\)
\(2\left( {x + 1} \right) - \left( {5x - 1} \right)\left( {x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {2 - 5x + 1} \right) = 0\)
\(\left( {x + 1} \right)\left( {3 - 5x} \right) = 0\)
Suy ra \(x + 1 = 0\) hoặc \(3 - 5x = 0\)
+) \(x + 1 = 0\) hay \(x = - 1\).
+) \(3 - 5x = 0\) hay \(5x = 3\), suy ra \(x = \frac{3}{5}\).
Vậy phương trình đã cho có hai nghiệm là \(x = - 1\) và \(x = \frac{3}{5}\).
b) Ta có \(\left( { - 4x + 3} \right)x = \left( {2x + 5} \right)x\)
\(\left( { - 4x + 3} \right)x - \left( {2x + 5} \right)x = 0\)
\(x\left( { - 4x + 3 - 2x - 5} \right) = 0\)
\(x\left( { - 6x - 2} \right) = 0\)
Suy ra \(x = 0\) hoặc \( - 6x - 2 = 0\)
+) \(x = 0\)
+) \( - 6x - 2 = 0\) hay \(6x = - 2\), suy ra \(x = - \frac{1}{3}\).
Vậy nghiệm của phương trình đã cho là \(x = - \frac{1}{3}\) và \(x = 0\).