- Trang chủ
- Lớp 9
- Toán học Lớp 9
- Vở thực hành Toán Lớp 9
- Vở thực hành Toán 9 - Tập 2
- Chương X. Một số hình khối trong thực tiễn
-
Vở thực hành Toán 9 - Tập 1
-
Chương I. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương II. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương III. Căn bậc hai và căn bậc ba
-
Chương IV. Hệ thức lượng trong tam giác vuông
-
Chương V. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 107
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 119
- Bài tập cuối chương V
-
-
Vở thực hành Toán 9 - Tập 2
Giải bài 2 trang 125 vở thực hành Toán 9 tập 2
Đề bài
Cho hình nón có bán kính đáy bằng 9cm, độ dài đường sinh bằng 15cm.
a) Tính diện tích xung quanh của hình nón.
b) Tính thể tích của hình nón.
c) Diện tích toàn phần của hình nón bằng tổng diện tích xung quanh và diện tích đáy. Tính diện tích toàn phần của hình nón đã cho.
Phương pháp giải - Xem chi tiết
a) Diện tích xung quanh của hình nón bán kính đáy r và độ dài đường sinh l là: \({S_{xq}} = \pi rl\).
b) Thể tích của hình nón bán kính đáy r và chiều cao h là: \(V = \frac{1}{3}\pi {r^2}h\).
c) + Diện tích đáy hình nón là: \(S = \pi {r^2}\).
+ Diện tích toàn phần của hình nón bằng tổng diện tích xung quanh và diện tích đáy.
Lời giải chi tiết
a) Diện tích xung quanh của hình nón là:
\({S_{xq}} = \pi .Rl = 9.15.\pi = 135\pi \left( {c{m^2}} \right)\).
b) Chiều cao của hình nón là:
\(h = \sqrt {{l^2} - {R^2}} = \sqrt {{{15}^2} - {9^2}} = 12\left( {cm} \right)\).
Thể tích của hình nón là:
\(V = \frac{1}{3}\pi .{R^2}h = \frac{1}{3}\pi {.9^2}.12 = 324\pi \left( {c{m^3}} \right)\).
c) Diện tích toàn phần của hình nón là:
${{S}_{tp}}={{S}_{xq}}+{{S}_{đáy}}=\pi Rl+\pi {{R}^{2}}=\pi R\left( l+R \right)\\=\pi .9.\left( 15+9 \right)=216\pi \left( c{{m}^{2}} \right)$