Giải bài tập 52 trang 28 sách bài tập toán 12 - Cánh diều

Đề bài

Biết \(F\left( x \right) = {e^x}\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên \(\mathbb{R}\). Giá trị của \(\int\limits_0^1 {\left[ {3 + f\left( x \right)} \right]dx} \) bằng:

A. \(2 + e\).

B. \(3 + e\).

C. 3.

D. \(3{\rm{x}} + {e^x}\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của tích phân: \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết

\(\int\limits_0^1 {\left[ {3 + f\left( x \right)} \right]dx}  = \int\limits_0^1 {3dx}  + \int\limits_0^1 {f\left( x \right)dx}  = \left. {3{\rm{x}}} \right|_0^1 + \left. {{e^x}} \right|_0^1 = 3 + e - 1 = 2 + e\).

Chọn A.