- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Kết nối tri thức
- Toán 7 tập 1 với cuộc sống Kết nối tri thức
- Chương IV. Tam giác bằng nhau
-
GIẢI SGK TOÁN 8 KẾT NỐI TRI THỨC - MỚI NHẤT
-
Toán 7 tập 1 với cuộc sống
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 68
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 74
- Bài 15. Các trường hợp bằng nhau của tam giác vuông
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 85
- Bài tập cuối chương IV
-
Chương V. Thu thập và biểu diễn dữ liệu
-
Hoạt động thực hành trải nghiệm
-
-
Toán 7 tập 2 với cuộc sống
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên
- Bài 33. Quan hệ giữa ba cạnh của một tam giác
- Luyện tập chung trang 70
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
- Luyện tập chung trang 82
- Bài tập cuối chương IX
-
Chương X. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm tập 2
-
Giải bài 4.3 trang 62 SGK Toán 7 tập 1 - Kết nối tri thức
Đề bài
Tính các số đo x, y, z trong Hình 4.8
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Tổng hai góc kề bù bằng 180 độ.
Áp dụng định lí: Tổng số đo 3 góc trong 1 tam giác bằng 180 độ.
Lời giải chi tiết
Ta có:
\(x + {120^o} = {180^o}\)( 2 góc kề bù)
\(\begin{array}{l} \Rightarrow x = {180^o} - {120^o}\\ \Rightarrow x = {60^o}\end{array}\)
Áp dụng định lí tổng các góc trong tam giác ABC, có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ \Rightarrow {80^o} + {60^o} + y = {180^o}\\ \Rightarrow y = {40^o}\end{array}\)
Ta có: \(\widehat {DCE} = y = {40^o}\)(đối đỉnh)
Áp dụng định lí tổng các góc trong tam giác CDE, có:
\(\begin{array}{l}\widehat C + \widehat D + \widehat E = {180^o}\\ \Rightarrow {40^o} + \widehat D + {70^o} = {180^o}\\ \Rightarrow \widehat D = {70^o}\end{array}\)
Mà \(\widehat D + z = {180^o}\)( 2 góc kề bù)
\( \Rightarrow z = {180^o} - {70^o} = {110^o}\)