- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Kết nối tri thức
- Toán 7 tập 2 với cuộc sống Kết nối tri thức
- Chương VII. Biểu thức đại số và đa thức một biến
-
GIẢI SGK TOÁN 8 KẾT NỐI TRI THỨC - MỚI NHẤT
-
Toán 7 tập 1 với cuộc sống
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 68
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 74
- Bài 15. Các trường hợp bằng nhau của tam giác vuông
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 85
- Bài tập cuối chương IV
-
Chương V. Thu thập và biểu diễn dữ liệu
-
Hoạt động thực hành trải nghiệm
-
-
Toán 7 tập 2 với cuộc sống
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên
- Bài 33. Quan hệ giữa ba cạnh của một tam giác
- Luyện tập chung trang 70
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
- Luyện tập chung trang 82
- Bài tập cuối chương IX
-
Chương X. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm tập 2
-
Giải bài 7.24 trang 38 SGK Toán 7 tập 2 - Kết nối tri thức
Đề bài
Rút gọn các biểu thức sau:
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
b) \(\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\)
Phương pháp giải - Xem chi tiết
Bước 1: Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
Bước 2: Trừ các đa thức thu được
Lời giải chi tiết
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]
= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)
= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3
= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x
= -8x4 + 5x3 + 24x2 – 6x
\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)