- Trang chủ
- Lớp 7
- Toán học Lớp 7
- SGK Toán Lớp 7 Kết nối tri thức
- Toán 7 tập 2 với cuộc sống Kết nối tri thức
- Chương IX. Quan hệ giữa các yếu tố trong tam giác
-
GIẢI SGK TOÁN 8 KẾT NỐI TRI THỨC - MỚI NHẤT
-
Toán 7 tập 1 với cuộc sống
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 68
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 74
- Bài 15. Các trường hợp bằng nhau của tam giác vuông
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 85
- Bài tập cuối chương IV
-
Chương V. Thu thập và biểu diễn dữ liệu
-
Hoạt động thực hành trải nghiệm
-
-
Toán 7 tập 2 với cuộc sống
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên
- Bài 33. Quan hệ giữa ba cạnh của một tam giác
- Luyện tập chung trang 70
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
- Luyện tập chung trang 82
- Bài tập cuối chương IX
-
Chương X. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm tập 2
-
Giải bài 9.11 trang 69 SGK Toán 7 tập 2 - Kết nối tri thức
Đề bài
a) Cho tam giác ABC có AB = 1 cm, BC = 7 cm. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên ( cm).
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất. Hãy tìm độ dài cạnh CA biết rằng đó là một số nguyên ( cm).
Phương pháp giải - Xem chi tiết
Sử dụng bất đẳng thức tam giác: Trong một tam giác, độ dài của một cạnh luôn nhỏ hơn tổng độ dài hai cạnh còn lại và lớn hơn hiệu độ dài 2 cạnh còn lại: b – c < a < b + c ( với a, b, c là độ dài 3 cạnh của tam giác)
Kết hợp điều kiện độ dài cạnh CA là số nguyên
Lời giải chi tiết
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
7 – 1 < CA < 7 + 1
6 < CA < 8
Mà CA là số nguyên
CA = 7 cm.
Vậy CA = 7 cm.
b) Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
AB + CA > BC
2 + CA > 6
CA > 4 cm
Mà CA là số nguyên và CA < 6 ( vì BC = 6 cm là cạnh lớn nhất của tam giác)
CA = 5 cm
Vậy CA = 5 cm.