- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 1.14 trang 20 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Tìm a và b sao cho hệ phương trình \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) có nghiệm là \(\left( {1; - 2} \right).\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
\(\left( {1; - 2} \right)\) là nghiệm hệ phương trình đã cho nên thay \(x = 1;y = - 2\) vào hệ phương trình ta sẽ có một hệ phương trình mới chứa a và b thỏa mãn đề bài. Giải hệ ta sẽ tìm được a và b.
Lời giải chi tiết
Thay \(x = 1;y = - 2\) vào hệ \(\left\{ \begin{array}{l}ax + by = 1\\ax + \left( {2 - b} \right)y = 3\end{array} \right.\) ta được
\(\left\{ \begin{array}{l}a - 2b = 1\\a - 2\left( {2 - b} \right) = 3\end{array} \right.\) hay \(\left\{ \begin{array}{l}a - 2b = 1\\a + 2b = 7\end{array} \right.\left( 1 \right)\)
Trừ hai vế của hai phương trình \(\left( 1 \right)\) ta có \(\left( {a - 2b} \right) - \left( {a + 2b} \right) = 1 - 7\) hay \(-4b = -6\) suy ra \(b = \frac{3}{2}\).
Từ phương trình \(a - 2b = 1\) suy ra \(a = 1 + 2b\) do đó \(a = 1 + 2. \frac{3}{2} = 4\)
Vậy với \(a = 4, b = \frac{3}{2}\) thì hệ phương trình có nghiệm là \(\left( {1; - 2} \right).\)