- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 2.22 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Điều kiện xác định của phương trình \(\frac{x}{{2x + 1}} + \frac{3}{{x - 5}} = \frac{x}{{\left( {2x + 1} \right)\left( {x - 5} \right)}}\) là
A. \(x \ne - \frac{1}{2}.\)
B. \(x \ne - \frac{1}{2}\) và \(x \ne - 5.\)
C. \(x \ne 5.\)
D. \(x \ne - \frac{1}{2}\) và \(x \ne 5.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Điều kiện xác định của phương trình chứa ẩn ở mẫu là mẫu khác 0.
Lời giải chi tiết
Ta có \(\left\{ \begin{array}{l}2x + 1 \ne 0\\x - 5 \ne 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x \ne \frac{{ - 1}}{2}\\x \ne 5\end{array} \right.\)
Vậy điều kiện xác định của phương trình là \(x \ne \frac{{ - 1}}{2}\) và \(x \ne 5\).
Đáp án đúng là đáp án D.
- Giải bài tập 2.23 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.24 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.25 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.26 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 2.27 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức