- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 2.28 trang 42 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Cho \(a < b,\) hãy so sánh:
a) \(a + b + 5\) với \(2b + 5;\)
b) \( - 2a - 3\) với \( - \left( {a + b} \right) - 3.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Áp dụng tính chất của bất đẳng thức:
- Khi nhân cả hai vế của bất đẳng thức với một số dương ta được bất đẳng thức cùng chiều
- Khi nhân cả hai vế của bất đẳng thức với một số dương ta được bất đẳng thức ngược chiều
- Khi cộng cả hai vế của bất đẳng thức với một số ta được bất đẳng thức cùng chiều
Lời giải chi tiết
a) \(a + b + 5\) với \(2b + 5;\)
Ta có: \(a < b\) nên \(a + b < b + b\) hay \(a + b < 2b\) (cộng cả hai vế với b)
suy ra \(a + b + 5 < 2b + 5\) (cộng cả hai vế với 5)
b) \( - 2a - 3\) với \( - \left( {a + b} \right) - 3.\)
Ta có: \(a < b\) nên \(a + a < b + a\) hay \(2a < a + b\) (cộng cả hai vế với a)
suy ra \( - 2a > - \left( {a + b} \right)\) (nhân cả hai vế với -1 < 0 nên bất phương trình đổi dấu)
Do đó ta có \( - 2a - 3 > - \left( {a + b} \right) - 3\) (cộng cả hai vế với - 3)