- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 3. Căn bậc hai và căn bậc ba
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 3.6 trang 48 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Không dùng MTCT, chứng tỏ biểu thức A có giá trị là số nguyên:
\(A = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} - \sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} .\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Chú ý: \(\sqrt {{A^2}} = \left| A \right|\)và quy tắc dấu ngoặc (có dấu trừ trước ngoặc thì phá ngoặc đổi dấu các hạng tử trong ngoặc)
Lời giải chi tiết
\(\begin{array}{l}A = \sqrt {{{\left( {1 + 2\sqrt 2 } \right)}^2}} - \sqrt {{{\left( {1 - 2\sqrt 2 } \right)}^2}} \\ = \left| {1 + 2\sqrt 2 } \right| - \left| {1 - 2\sqrt 2 } \right|\\ = 1 + 2\sqrt 2 - \left( {2\sqrt 2 - 1} \right)\\ = 1 + 2\sqrt 2 - 2\sqrt 2 + 1\\ = 2\end{array}\)