- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 6.27 trang 24 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Một bể bơi hình chữ nhật có diện tích \(300{m^2}\) và chu vi là 74m. Tính các kích thước của bể bơi này.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Chiều dài và chiều rộng của bể bơi là nghiệm của phương trình: \({x^2} - 37x + 300 = 0\)
+ Giải phương trình ta tìm được chiều dài và chiều rộng của bể bơi.
Lời giải chi tiết
Nửa chu vi của mảnh vườn là: \(74:2 = 37\left( m \right)\).
Khi đó, chiều dài và chiều rộng của mảnh vườn là nghiệm của phương trình:
\({x^2} - 37x + 300 = 0\)
Ta có: \(\Delta = {\left( { - 37} \right)^2} - 4.1.300 = 169 > 0,\sqrt \Delta = 13\).
Nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{37 + 13}}{2} = 25;{x_2} = \frac{{37 - 13}}{2} = 12\)
Vậy chiều rộng và chiều dài của bể bơi lần lượt là 12m và 25m.
Chú ý khi giải: Trong hình chữ nhật, chiều dài luôn lớn hơn chiều rộng.