- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 6.36 trang 29 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Tìm hai số u và v, biết:
a) \(u + v = 15,uv = 56\);
b) \({u^2} + {v^2} = 125,uv = 22\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Hai u và v là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).
+ Tính nghiệm của phương trình dựa vào công thức nghiệm (hoặc công thức nghiệm thu gọn).
Lời giải chi tiết
a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)
Ta có: \(\Delta = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)
Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).
Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).
b) Ta có: \({u^2} + {v^2} = 125 \Rightarrow {\left( {u + v} \right)^2} - 2uv = 125 \Rightarrow {\left( {u + v} \right)^2} = 125 + 2.22 = 169\)
Do đó, \(u + v = 13\) hoặc \(u + v = - 13\).
Trường hợp 1: \(u + v = 13\):
Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.22 = 81 > 0\).
Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)
Trường hợp 2: \(u + v = - 13\):
Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)
Ta có: \(\Delta = {13^2} - 4.22 = 81 > 0\).
Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)
Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).