- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 6.7 trang 9 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Một cổng vòm được thiết kế dạng parabol \(y = a{x^2}\) như Hình 6.8. Biết chiều rộng của chân cổng là \(AB = 6m\) và chiều cao của cổng là \(OI = 4,5m\).
a) Tìm hệ số a dựa vào các dữ kiện trên. Từ đó, tính độ dài đoạn HK biết H cách điểm chính giữa cổng I là 2m.
b) Để vận chuyển hàng qua cổng, người ta dự định sử dụng một xe tải có chiều rộng 2m, chiều cao 3m. Hỏi xe tải này có thể đi qua được cổng vòm hay không?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(\left( {3;\frac{9}{2}} \right)\). Thay tọa độ điểm \(\left( {3;\frac{9}{2}} \right)\) vào hàm số \(y = a{x^2}\) ta tìm được a.
Gọi N là giao điểm của HK và trục Ox. Khi đó, \(HK = NH - NK\).
b) So sánh chiều cao và chiều rộng của xe tải và với chiều cao và chiều rộng của cổng vòm. Từ đó rút ra kết luận.
Lời giải chi tiết
a)
Đồ thị hàm số \(y = a{x^2}\) đi qua điểm \(\left( {3; - \frac{9}{2}} \right)\) nên ta có:
\( - \frac{9}{2} = a{.3^2} \Rightarrow a = - \frac{1}{2}\).
Khi đó, \(y = - \frac{1}{2}{x^2}\).
Ta có: \(H(2;-4,5)\); \(K(2;y_K)\)
Vì K thuộc đồ thị hàm số \(y = - \frac{1}{2}{x^2}\) nên \(y_K = -\frac{1}{2}{2^2}= -2\) nên \(K(2;-2)\)
Từ đó ta có: \(HK = 4,5 - 2 = 2,5\left( m \right)\).
b) Cổng vòm có chiều cao bằng \(OI = 4,5m\) và chiều rộng \(AB = 6m\).
Với \(x = 1\) thì \(y = - \frac{1}{2}{.1^2} = - \frac{1}{2}\).
Vì \(4,5 - \left| { - \frac{1}{2}} \right| > 3\) nên xe tải này có thể đi qua cổng vòm được.